6 research outputs found

    Connecting your Mobile Shopping Cart to the Internet-of-Things

    Get PDF
    International audienceOnline shopping has reached an unforeseen success during the last decade thanks to the explosion of the Internet and the development of dedicated websites. Nonetheless, the wide diversity of e-commerce websites does not really foster the sales, but rather leaves the customer in the middle of dense jungle. In particular, finding the best offer for a specific product might require to spend hours browsing the Internet without being sure of finding the best deal in the end. While some websites are providing comparators to help the customer in finding the best offer meeting her/his requirements, the objectivity of these websites remains questionable, the comparison criteria are statically defined, while the nature of products they support is restricted to specific categories (e.g., electronic devices). In this paper, we introduce MACCHIATO as a user-centered platform leveraging online shopping. MACCHIATO implements the principles of the Internet-of-Things by adopting the REST architectural style and semantic web standards to navigate product databases exposed on the Internet. By doing so, customers keep the control of their shopping process by selecting the stores and comparing the offers according to their own preferences

    An Ontological Framework for Opportunistic Composition of IoT Systems

    Get PDF
    As the number of connected devices rapidly increases, largely thanks to uptake of IoT technologies, there is significant stimulus to enable opportunistic interactions between different systems that encounter each other at run time. However, this is complicated by diversity in IoT technologies and implementation details that are not known in advance. To achieve such unplanned interactions, we use the concept of a holon to represent a system's services and requirements at a high level. A holon is a self-describing system that appears as a whole when viewed from above whilst potentially comprising multiple sub-systems when viewed from below. In order to realise this world view and facilitate opportunistic system interactions, we propose the idea of using ontologies to define and program a holon. Ontologies offer the ability to classify the concepts of a domain, and use this formalised knowledge to infer new knowledge through reasoning. In this paper, we design a holon ontology and associated code generation tools. We also explore a case study of how programming holons using this approach can aid an IoT system to self-describe and reason about other systems it encounters. As such, developers can develop system composition logic at a high-level without any preconceived notions about low-level implementation details. © 2020 IEEE
    corecore